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Abstract 

The use of SRAM-based Field Programmable Gate 
Arrays (FPGAs) is becoming more and more prevalent 
in space applications. Comnzercid-grude FPGAs are 
potentially susceptible to permanently debilitating 
Single-Event Latchups (SELs). Repair methods based 
on Evolutionaiy Algorithms may be applied to FPGA 
circuits to enable successful fault recovery. This paper 
presents the experimental results of applying such 
methods to repair four commonly used circuits 
(quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit 
adder, 440-7 decoder) into which a number of 
simulated faults has been introduced. The results 
suggest that evolutionary repair techniques can 
improve the process of fault recovery when used 
instead oJ or as a supplement to Triple Modular 
Redundancy (TMR), wlziclz is currently the 
predominant nietlzod for mitigating FPGA faults. 

1. Introduction 

FPGAs have a number of advantages which make 
them particularly suitable for space applications. These 
advantages have been noted in both recent research 
publications [ 3 ] ,  [ 131 and manufacturers' literature [ 11, 
[14]. The benefits of FPGAs include reconfiguration 
capability to support multiple missions, the potential to 
accommodate on-chip and off-chip failures, and the 
ability to correct latent design errors after launch. 

For some FPGA applications such as Reusable 
Launch Vehicles (RLVs), comparatively short mission 
durations and low levels of ionizing radiation are 
involved. In these cases, conventional TMR techniques 
often provide sufficient fault handling coverage. On the 
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other hand, in-mission reconfigurable FPGAs are 
advantageous for deep space probes, satellites, and 
extraterrestzial rovers. In these applications, the 
radiation exposures, mission durations, and repair 
complexities are significanzly greater, prompting the 
need for adequate fault coverage. Since the number of 
programming cycles in SRAM-based devices is 
unlimited, new techniques become feasible for active 
recovery through reconfiguration of a compromised 
FPGA. 

Permanent Single-Event Latchup (SEL) failures 
may impact CLBs and/or programmable 
interconnections within the FPGA itself. They may also 
involve other supporting devices that the FPGA 
interfaces with or processes data from. These failure 
modes also suggest that the ability to derive an 
alternative FPGA configuration in-situ would be 
beneficial. Likewise, SEL exposures exist with regards 
to the data processing path within the FPGA that is not 
involved with the device's programmable configuration. 
In the above cases, the FPGA configuration derived at 
design time will no longer provide the required 
functionality for the damaged part. 

Autonomous repair can either provide alternative to 
or supplement redundancy as a means of restoring lost 
capability. Evolutionary recovery methods attempt to 
facilitate repair through reuse of damaged parts. The 
fault repair mechanisms discussed in this paper can 
improve system reliability regardless of whether 
redundancy is utilized or not. If a particular circuit has 
been shown to respond well to evolutionary repair, then 
evolutionary algorithms can be relied on as a primary 
source of fault tolerance. This allows the engineers to 
avoid the increased size, weight, and power 
consumption traditionally associated with providing 
redundant spares. In cases when evolutionary 



algorithms have difficulties producing fully functional 
repairs, it is still possible to use these methods 
alongside traditional redundancy techniques. By 
repairing each individual triplet of a triple-redundant 
system, it is possible to improve the performance of 
each triplet by a large enough margin so that the 
majority output is 100% correct (even if each 
individual output is not). Another advantage of the 
genetic algorithm based methods for the fault repair is 
that the characteristics of the failure need not be 
precisely diagnosed in order to restore the lost 
functionality. 

Section 2 of this paper will discuss prior work in 
the area of FPGk fault tolerance. Section 3 will 
describe the type and number of faults we are looking 
to address. Sections 4, 5, 6 and 7 will present the 
results of applying evolutionary techniques to repair 
faults in 4 different types of circuits. Section 8 will 
conclude the paper and discuss future applicable work. 

2. Background 

Various evolutionary approaches have been 
previously proposed for FPGA fault recovery. While 
some apply evolutionary algorithms prior to the 
occurrence of the fault, others attempt to repair the 
fault after its incidence. Three recent examples that 
apply evolutionary algorithms to realize fault-tolerant 
designs include [5], [4], and [SI. In [5], Miller 
examined properties of messy gates whereby evolved 
logic functions inherently contain redundant terms as 
their functional boundaries change and overlap. In [4], 
Canham and Tyrrell compared the fault tolerance of 
oscillators evolved by including a range of fault 
conditions within the fitness measure during the 
evolutionary process. In [8], the evolution of designs 
containing redundant capabilities without the designer 
having to explicitly specify the redundant parts 
themselves was investigated. 

The second approach involves restoring the 
functionality of Ehe original circuit after introducing the 
fault or faults. Some examples of this approach will be 
presented in the later sections of this paper. 

3. Fault description 

The overall goal of the project was to examine the 
performance of the evolutionary fault-repair 
mechanism for various circuits when a certain 
percentage of circuit’s transistors is affected by faults. 
Ideally, a number of single-event Iatchups (SELs) 
would be replicated in the circuit. Unfortunately, exact 
simulation of radiation-induced faults is difficult. First, 

there are few studies available on what type of faults 
occurs most frequently when a Virtex FPGA is 
subjected to cosmic radiation. Second, h e  proprietary 
nature of the Xilinx Virtex confipration file format 
makes it difficult to control the behavior of the 
individual transistors on the FPGA. In our case, the 
most convenient method of fault simulation is “hard- 
wiring” the individual LUT values andlor connections 
by setting the corresponding bits inside our 
chromosome to 0 or 1. However, simply fixing a 
certain percentage of chromosomal bits fails to take 
into account the actual distribution of logic and routing 
transistors inside the FPGA. It is estimated that on a 
Virtex FPGA 80% or more of all transistors are 
dedicated to routing. Thus, a larger number of 
simulated faults should affect routing rather than logic. 
We decided to implement a condition where at least 
10% of all the LUTs in the circuit produce a constant 
output (either a 0 or a 1). This setup simulates shorting 
the output of a LUT to either power or ground. To 
complement the simulated routing faults, a smaller 
number of logic fauks was also introduced. The final 
simulation “hard-wired’’ between 1% and 2% of all the 
LUT bits to either 0 or 1, thus simulating either a stuck- 
at-0 or a stuck-at-I condition inside the LUT. 

4. Quadrature decoder 

The quadrature decoder was selected as an initial 
case study for testing and refinement of our 
evolutionary recovery strategy. Quadrature decoders 
provide a means of counting objects passed back and 
forth through two beams of light, or alternatively 
determining the angular displacement and direction of 
rotation of an encoder wheel turning about its axis 
(Figure 1). 

Figure 1. Quadrature decoder 

The quadrature decoder circuit is a 4-state state 
machine, with 2 1-bit inputs and 1 1-bit output. It is 
implemented using 4 CLBs (or 16 LUTs) on a Virtex 
FPGA. In order to test the correctness of the circuit, a 
test vector of 700 bit pairs is fed in. A circuit that 



produces all 700 output bits correctly is presumed to be 
fully functional. 

While the total of 16 LUTs are used to implement 
the quadrature decoder, the circuit inputs are fed into 
the first 4 LUTs (LUTs 0 through 3). LUTs 4 through 
15 can have each of their inputs connected to the 
output of any other LUT in the circuit. All the outputs 
are registered, and feedback is allowed. The total 
length of the chromosome representing the quadrature 
decoder is 400 bits (Figure 2). 

Figure 2. Format of the Quadrature Decoder 
chromosome 

Our first experiment was to evolve a quadrature 
decoder from scratch (Le. with all initial circuit 
configmations randornly generated) on a faultless 
substrate. 5 runs were performed, with each run limited 
to 4000 generations (Table 1). The following 
evolutionary parameters were used for the runs: 
Population size - 40, Crossover type - two-point, 
Crossover probability - SO%, Mutation probability - 
0.2% per bit, Tournament size - 3, Elitism - 2. 

Table 1. Results of quadrature decoder evolution 
from scratch 

Initial Final 
Initial fitness Final fitness Number of lndivs Per Mutation 
fitness % fitness % generations generation probability 

Run 1 483 69 700 100 777 40 0002 
Run 2 468 6686 700 100 321 40 0002 
Run 3 461 6586 700 100 3552 40 0002 
Run 4 490 70 683 9757 3999 40 0002 
Run 5 458 6543 676 9657 3999 40 0002 

AV!3 472 6743 691 8 9883 

Median 468 6686 700 100 

Several evolutionary runs were performed with just 
1 fault in order to test both the fault injection 
mechanism and the response of the evolutionary 
algorithm to singular faults. While not enough runs 
have been performed to obtain statistically significant 

results, the general observation is that the algorithm has 
little trouble recovering from just 1 fault of any type. 

The fault injection approach for introducing 
multiple faults was described in Section 3. There are 16 
LUTs used in the evolution of the circuit. 2 of those 
LUTs would be affected by simulated routing faults, 
making them output either a constant 0 or a 1. Such 
setup roughly simulates a scenario in which 12.5% of 
the circuit area is damaged by the routing faults. In 
addition, 5 logic bits (out of 256 total or -2%) would 
be subject to a stuck-at fault. The location and the type 
of faults (stuck-at-0 or stuck-at-1) were determined 
randomly for each run (for both-logic and routing). 
Each run took place for at least 10K generations; ail 
runs either successfully completed or were terminated 
before they reached 20K. The first 3 runs were 
performed with a population of 60 individuals; the later 
7 runs had a population of 100 individuals. 

The generation 0 of each run was seeded with 20 
“hand-designed” quadrature decoder individuals, each 
of them fully functional when no faults were present. 
The rest of the “generation 0” individuals were 
randomly created. The only differences between the 
runs were the location and the type of faults. 

There were 10 runs performed. Out of the 10, 6 
runs have produced a complete repair (resulting in a 
60% repair rate). For the runs which achieved complete 
repair, average number of evaluations required was 
66053 (or 660 generations with a population of 100). 
The average starting fitness was 76.7%, and the 
average ending fitness was 99.5%. Average 
improvement in fitness per 1000 evaluations was 
2.12%. For the runs where complete repair was 
achieved, this improvement was 3.52%. For the runs 
where complete repair was not achieved, the 
improvement was 0.02% (Table 2). 

5.3-by-3-bit Multiplier 

The 3-by-3-bit multiplier was the first 
combinational circuit tested with our algorithm. Our 
motivation for evolving this circuit stems from its 
importance in Digital Signal Processing (DSP), where 
multipliers are used to construct Finite Impulse 
Response (FIR) filters. 



Table 2. Results of quadrature decoder evolution with fauIts 

Run I 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 
Run 7 
Run 8 
Run 9 
Run 10 

Average 

Median 

Ending 
Starting Starting Ending best  
best  bes t  best fitness 
fitness fitness % fitness % In 

666 95.1429 700 100 
462 66 700 100 
568 81.1429 675 96.429 
503 71.8571 700 100 
646 92.2857 700 100 
445 63.5714 696 99.429 
472 67.4286 699 99.857 
654 93.4286 700 100 
496 70.8571 700 100 
458 65,4286 - 694 99.143 

010 
Number of Improvement 

Number evals. per Number of per 1000 
iprovement lmprov % of g e n s  gen evals. evaluations 

34 4.857143 37 60 2220 2.18790219 
238 34 375 60 22500 1.51 11 I1 11 
107 15.28571 10814 60 648840 0.02355853 
197 28.14286 3489 100 348900 0.08066167 
54 7.714286 10 100 IO00 7.71428571 
251 35.85714 18256 100 1825600 0.01964129 
227 32.42857 13581 1 00 13581 00 0.0238779 
46 6.571429 8 100 800 8.21428571 
204 29.14286 209 100 20900 1.39439508 
236 3371429 12334 100 1233400 0.02733443 

537 76.7143 696.4 99.486 159 4 

499.5 700 200.5 

Other groups in the evolvable hardware community 
have also recognized the importance of both FIR filters 
and their components. A hardware architecture 
necessary to efficiently evolve FIR filter coefficients 
was laid out and simulated in [12]. In [9]: Thomson 
evolved Verilog netlists of several FlR Primitive 
Operator Filters (RR filters which are constructed 
without the use of multipliers). In [ 111, Vassilev used 
evolutionary algorithms to produce circuit 
configurations for multipliers of various sizes (the 
largest one being 4-by-4-bit) which use the minimal 
possible number of logic gates. Torresen [lo] evolved 
a 5-by-5-bit multiplier in simulation, by using data 
partitioning to decompose the problem into smaller 
"training sets" and evolving each output bit 
individually. 

The 3-bit multiplier is a combinational circuit. It 
has 6 inputs (3 bits for each of the 2 multiplicands) and 
6 outputs (for the 6-bit product). Since the circuit is 
fully combinational, all the LUT outputs are 
unregistered. Therefore, feedback is not allowed, in 
order to prevent metastable conditions within the 
circuit. Several stages are used; the inputs into a LUT 
at any given stage can only come from the outputs of 
LUTs from the earlier stages. The initial template used 
to evolve the multiplier is shown in Figure 3. 

The circuit can use up to 12 CLBs, or 48 LUTs. 
The gene for each LUT is 40 bits long. Out of those 40 
bits, 16 bits implement the logic of the LUT, while 24 
bits specify the connections of the LUT inputs. The 
algorithm has a provision to enforce the rule that 
inputs into any given LUT may only come from the 
LUTs in previous stages. Aside from the number of 
bits devoted to routing, and the method to enforce the 

2.1 1970536 

complete 3.51710691 
Average for 

Average for 
incomplete 0.02360304 

stage rule (which does not affect the chromosome 
itself, only the way it is interpreted), the overall 
chromosomal structure for the multiplier is the same as 
that for the quadrature decoder (Figure 2). The 
complete chromosome is 1536 bits l o ~ g .  A mxltiplier 
circuit has to be able to produce 384 bits correctly in 
order to be 100% functional. Therefore, the fitness of 
each individual in the population ranges from 0 to 384. 

i. 

Stage0 , Sage 1 %age 2 , 

15LUTs 4LUTs 4LUTs 4LUT5 8LUTs 

Figure 3. Initial template for multiplier evoIution 

Before testing the fault-repair capabilities of our 
evolutionary algorithm on the 3-bit multiplier, we 
wanted to evolve one from scratch on a faultless 
substrate. The evolved circuit was later used to seed 
the fault-containing runs (Figure 4). The evolution 
took 114248 generations with a population of 200 
individuais per generation. Other evolutionary 
parameters were as following: crossover type - two- 
point, crossover probability - 80%, mutation 



probability - 0.1% per bit, tournament size - 3, number 
of elite individuals - 2. 

;@ ig 
: -  ( 1 M  

Figure 4.3-by-3-bit multiplier evolved from scratch 

In  order to satisfy the conditions proposed in 
Section 3, 5 LUTs (10.4% of the total circuit area) and 
12 additional LUT logic bits (1.6% of the total 
number) were affected by simulated stuck-at faults. 17 
runs were conducted, each run varying in length and/or 
initial seed numbers for the randomly determined 
functions (Table 3). 

Of all the runs performed, none has achieved 100% 
repair. The average improvement in correctness over 

the course of the run was 12.5% (from 83.3% to 
95.8%). Notably, most of the improvement occurs 
early in the evohtionary process. The average 
improvement after 1000 generations was 10.4% (from 
83.3% to 93.7%). 

6.3-by-3 bit adder 

Along with multipliers, adders are important 
building blocks of digital circuits. Adders are even 
more essential to the FD? filter design than multipliers 
(since it is possible to implement an FIR filter.without 
the use of multipliers, but not without the use of 
adders). 
Because of their usefulness, simplicity, and scalability, 
adders have been frequently utilized as sample 
problems for testing various evolutionary algorithms. 
In [6], MiIler demonstrated several 2-bit adders 
evolved in simulation from 2-input Iogic gates and 2- 
input MUXes. In [2], Bentley continued Miller's work 
by applying constraints to the use of some FPGA 
resources, while allowing his genetic algorithm to 
make more extensive use of others. And in [7], Shanthi 
explored the evolution of fault-tolerant 2-bit adders, 
implemented by utilizing empty resources available on 
the FF'GA. 

- 
Table 3. Results of multipIier evoIution in the presence of €aults 

Mutation Fit Fit. lmprov 
Initial Final probab. after After after 

Run Initial fitness Final fitness lmprov Number Individs. Evolution Fault (0.1% by 1000 1000 1000 
# fitness Yo fitness % YO of gens Per gen seed seed default) gens gen YO gen YO 

1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

11 
12 
13 
1 4  
15 

16 

1 7  

332 86.46 
332 86.46 
332 86.46 
332 86.46 
332 86.46 

320 83.33 
320 83.33 
320 83.33 
320 83.33 
320 83.33 

314 81.77 
314 81.77 
314 81.77 
314 81.77 
314 81.77 

287 74.74 

320 83.33 

365 95.05 8.594 13256 
362 94.27 7.813 2709 
364 94.79 8.333 1928 
366 95.31 8.854 9892 
365 95.05 8.594 1942 

379 98.7 15.36 

377 98.18 14.84 
380 98.96 15.63 
374 97.4 14.06 

378 98.44 15.1 

361 94.01 12.24 
364 94.79 13.02 
361 94.01 12.24 
361 94.01 12.24 
359 93.49 11.72 

360 93.75 19.01 

380 98.96 15.63 

10883 
26561 
I2006 
21 529 
12361 

I 1477 
16940 
11 354 
I0536 
17235 

22425 

222056 

IO0 
100 
100 
IO0 
100 

100 
100 
100 
100 
100 

100 
100 
100 
100 
IO0 

100 

io0 

4371 4371 
4372 4371 
4373 4371 
4374 4371 
4375 4371 

4371 4372 
4372 4372 
4373 4372 
4374 4372 
4375 4372 

4371 4373 M: 0.2% 
4371 4373 
4372 4373 
4373 4373 
4374 4373 

4371 4380 

4377 4372 

359 93.49 7.031 
361 94.01 7.552 
362 94.27 7.813 
360 93.75 7.292 
365 95.05 8.594 

371 96.61 13.28 
370 96.35 13.02 
363 94.53 11.2 
373 97.14 13.8 
366 95.31 11.98 

348 90.63 8.854 
348 90.63 8.854 
351 91.41 9.635 
348 90.63 8.854 
351 91.41 9.635 

353 91.93 17.19 

369 96.09 12.76 

360 93.72 10.43 Avg 319.8 83.29 368 95.83 12.55 



The 3-by-3-bit adder is a combinational circuit 
which has 6 inputs (3 for each number to be added) 
and 4 outputs (the sum can be up to 4 bits long.) The 
empty template for evolving an adder is exactIy the 
same as that for evolving a multiplier (Figure 3). The 
adder, however, is a simpler circuit to evolve: it is 
comprised of fewer gates, and the outputs have 4 bits 
(not 6). Since there are 64 possible input-output 
combinations, and each output is 4 bits long, the 
fitness of any adder circuit can range from 0 to 256. 

Like the multiplier experiment, our first goal was 
to evolve an adder from scratch on a faultless 
substrate. Again, the evolved circuit was later used in 
the runs into which tfie fauits were introduced. Out of 
the 6 runs performed, 1 run has evolved a 100% 
functional adder in 3487 generations (Figure 5, Table 
4). 

Figure 5.3-by-3-bit adder evolved from scratch 

Table 4. Results of 3-by-3-bit adder evolution from 
scratch 

Initial Final 
Initial fitness Final fitness Number of Indivs. Per 
fitness % fitness % generations generation 

Run I 150 58.59 251 98.05 10530 200 
Run 2 152 59.38 252 98.44 27159 100 
Run 3 148 57.81 253 98.83 18276 200 
Run 4 150 58.59 250 97.66 10918 100 
Run 5 146 57.03 256 100 3487 100 
Run 6 150 58.59 253 9883 9750 100 

Avg 149.33 58.33 252.5 98.63 

Median 150 58.59 252.5 98.63 

The evolutionary parameters for the successful run 
were the following: Crossover type: two-point, 
Crossover probability: 80% per individual, Mutation 
probability: 0.1% per bit, Tournament size: 3, Elitism: 
2. 

The same number of faults was injected into the 3- 
bit adder as into the 3-bit multiplier (5 LUT outputs 
and 12 LUT logic bits were subject to a stuck-at fault.) 
10 runs were performed in order to attempt to recover 

the lost functionality. Out of the 10 runs, 2 have 
evolved a 100% correct circuit, resulting in a 20% 
repair rate (Table 5). All the runs were terminated 
between IOK and 17K generations. The evolutionary 
parameters were exactly the same as those used when 
the adder was evolved from scratch. 

7.440-7 decoder 

The decoder circuit has 4 inputs and 7 outputs; it is 
used to control the individual segments of the 7- 
segment LED display. The design is fairly simple; it 
requires fewer gates to implement than either a %bit 
adder or a 3-bit multiplier. The inputs are the bits for a 
number between 0 and 15; the outputs indicate 
whether a particular segment should be turned on or 
off. Usually 7-segment displays can only show 
numbers between 0 and 9; however, our circuit 
incorporates numbers 10 through 15 as well. 

The template for the evolution of the circuit is 
similar to that for the 3-bit multiplier and the 3-bit 
adder. There are 16 possible input combinations, each 
resulting in a 7-bit long output. Therefore, the fitness 
of each circuit can range from 0 to 112. 

The 4-to-7 decoder is a smaller circuit than either 
the 3-bit multiplier or the 3-bit adder, with fewer gates 
required to implement it. In addition, the maximum 
fitness of the decoder is smaller than that of the 
multiplier or the adder. Hence, the decoder is 
considerably easier to evolve. Only one evolutionary 
run was conducted to evolve the decoder from scratch. 
The best random individual in generation 0 had a 
fitness of 68 (60.7%), and a perfect individual was 
achieved in 119 generations. The evolutionary 
parameters were the same as those used for the 
faultless evolution of the 3-bit adder. 

The number and the type of faults introduced into 
the 4-to-7 decoder are the same as those for the 
multiplier and the adder (5 LUT outputs and 12 LUT 
logic bits subject to a stuck-at fault). Just Iike in 
previous experiments, the generation 0 of each run 
contains 20 previously-evolved decoder' individuals 
(while the rest of the population is randomly 
generated). 10 different runs were performed (the 
difference between the runs was in the location and the 
type of faults.) 9 runs have produced a fully functional 
decoder (90% repair rate). The 10" run was stopped 
after approximately 10K generations (Table 6). The 
evolutionary parameters were the same as those used 
for the faultless run. 



Table 5. Results of 3-by-3-bit adder evolution in the presence of faults 
% improv 

Fitness Fitness Improv. per 10000 
Initial Final Num. after after After %improv eva l s fo r the  

initial fitness Final fitness improv. of 1000 1000 1000 per 10000 first 1000 
fitness ?Lo Fitness % YO gens  gens  g e n s %  g e n s %  evals g e n s  

Run 1 180 70.31 224 87.5 17.188 15358 217 84.766 14.453 0.111912 1.4453125 
Run 2 166 64.84 222 86.719 21.875 11557 215 83.984 19.141 0.189279 1.9140625 
Run 3 191 74.61 253 98.828 24.219 10618 245 95.703 21.094 0.228091 2.109375 
Run 4 161 62.89 223 87.109 24.219 16385 222 86.719 23.828 0.14781 2.3828125 
Run 5 192 75 254 99.219 24.219 12141 247 96.484 21.484 0.199479 2.1484375 
Run 6 197 76.95 251 98.047 21.094 11995 216 84.375 7.4219 0.175855 0.7421875 
Run 7 195 76.17 224 87.5 11.328 11741 222 86.71 9 10.547 0.096483 1.0546875 
Run 8 184 71.88 253 98.828 26.953 10274 241 94.141 22.266 0.262343 2.2265625 
Run 9 - 21 1 82.42 256 100 17.578 16379 250- 97.656 15.234 0.107321 1.5234375 
Run 10 202 78.91 256 700 21.094 1786 251 98.047 19.141 1.151061 3.9140625 

Avg 187.9 73.4 241.6 94.375 20.977 

Median 191.5 74.8 252 98.438 21.484 

Table 6. Results of 440-7 decoder evolution in the 
presence of faults 

Irnprov. 
Num %per 

Initial Initial Final Final of 1000 
fitness fitness % Fitness fitness % lrnprov % gens evals 

Run1 92 8214286 112 100 1785714 134 133262 
Run2 90 8035714 112 100 1964288 111 1.76963 
Run3 83 7410714 112 100 2589288 451 057412 
Run4 94 8392857 112 100 16 07143 462 0 34787 
Run5 80 71 42857 112 100 2857143 405 070547 
Run6 91 81 25 112 100 1875 5456 003437 
Run7 81 7232143 103 91 964286 1966286 10347 001898 
Run8 89 7946429 112 100 2053571 1102 018635 
Run 9 88 7857143 112 100 2142857 214 100134 
Run10 84 75 112 100 25 753 033201 

Avg 872 7785714 111 1 99 196429 21 33929 1944 063027 

Avg excluding run 7 1010 06982 

Median 885 7901786 112 100 2008929 4565 048099 

8, Conclusion and future work 

Several observations can be made about the results 
of the performed evolutionary runs. First, every single 
run produced an improvement in circuit performance. 
Most of the improvement took place early in the 
process. Second, some circuits respond more readily 
than others to evolutionary fault repair. This 
responsiveness is usually correlated with the size and 
the complexity of the circuit. The repair time and 
probability also depend on the number and location of 
faults. 

Based on the observed results, multiple fault-repair 
strategies for the actual space-bound circuits can be 
proposed. For each mission, the fault-susceptible 
circuits can be analyzed prior to the launch. Each of 
those circuits would be subjected to a number of faults 
it might be expected to experience over the course of 

232.6 90.859 17.461 0.269964 1.74609375 

231.5 90.43 19.141 0,182567 1.9140625 
the mission. After introducing the faults into the 
circuit, an evolutionary fault-repair algorithm would be 
applied. The experimental results would indicate the 
probability that the functionality of the circuit could be 
fully restored in the allotted amount of time. Here, the 
availability requirements of the circuit (i.e., maximum 
allowed downtime) would need to be taken into 
account as well. Based on the testing results, there are 
two possibilities for incorporating the evolutionary 
algorithm into the mission. If it is determined that the 
genetic algorithm is likely to fully recover the 
functionality of the damaged circuit, then the 
evolutionary methods can be relied on as the only 
source of fault tolerance. In this case, size and 
complexity savings can be realized from eschewing 
redundant moduIes. The pre-launch testing might also 
determine that, for a specific circuit, the genetic 
algorithm would be unlikely to restore full 
functionality with the anticipated number of faults in 
the allowed amount of time. In this case, it would still 
be possible to utilize evolutionary fault repair 
alongside the TMR. It has been observed that 
evolutionary fault repair is successful in restoring the 
functionality of the tested circuits to above 80% or 
90% in virtually every case. Such repair might be 
sufficient if TMR is also used; because of the majority 
vote, the overall system might produce fully correct 
output even if each individual triplet does not. 

Just like TMR, evolutionary fault repair system 
would add size and complexity to the spacecraft 
electronics. However, the increase in circuitry would 
be constant relative to the overall number of electronic 
components (unlike TILIR, where the increase is linear 
relative to the overall circuit area). A single GA- 
specific processor could potentially perform 
evolutionary repair for every single EPGA-based 



circuit aboard the spacecraft (more than one processor 
might be required in case the origina,l processor would 
ever need to undergo repair itself, but the amount of 
overhead is still constant.) 

The main benefit of our algorithm is the fact that it 
tests evolved solutions on the physical FPGA, as 
opposed to software simulation. This enables the 
algorithm to take into account the physical features of 
the device (faults would fall under that category), and 
relaxes the requirement of fault location and isolation. 
Certainly every fault-mitigation approach needs to 
utilize physical FPGA at some stage of development. 
Currently our algorithm recovers the circuit 
functionality from the simulated faults. A logical 
continuation of this work would include testing the 
aIgorithm with physical faults (possibly by subjecting 
the FPGA to radiation from a particle accelerator). 

There are other potential areas for future work. 
Plans call for utilizing more advanced, generative 
genetic algorithms in order to increase the 
performance of the evolutionary search. Other goals 
include testing the algorithm on the actual mission- 
ready circuits. 
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